Quotation Böhm, Walter. 2008. Lattice path counting and the theory of queues. Research Report Series, Department of Statistics and Mathematics, Report 74.


RIS


BibTeX

Abstract

In this paper we will show how recent advances in the combinatorics of lattice paths can be applied to solve interesting and nontrivial problems in the theory of queues. The problems we discuss range from classical ones like M^a/M^b/1 systems to open tandem systems with and without global blocking and to queueing models that are related to random walks in a quarter plane like the Flatto-Hahn model or systems with preemptive priorities. (author´s abstract) In diesem Paper wird gezeigt, wie neuere Entwicklungen in der Kombinatorik von Gitterpunktwegen die Loesung interessanter und nichttrivialer Probleme in der Wartschlangentheorie ermoeglichen. Die Probleme, die hier untersucht werden, reichen von klassischen M^a/M^b/1 Systemen hin zu Tandemnetzwerken mit und ohne Global Blocking. Diskutiert werden auch Modelle, die sich auf Random Walks im 1. Quadranten zurueckführen lassen, wie das Modell von Flatto-Hahn oder Systeme mit preemptiven Prioritäten.

Tags

Press 'enter' for creating the tag

Publication's profile

Status of publication Published
Affiliation WU
Type of publication Working/discussion paper, preprint
Language English
Title Lattice path counting and the theory of queues
Title of whole publication Research Report Series, Department of Statistics and Mathematics, Report 74
Year 2008
URL http://epub.wu-wien.ac.at/dyn/virlib/wp/showentry?ID=epub-wu-01_e14&from=NEW&style=blank

Associations

People
Böhm, Walter (Details)
Organization
Institute for Statistics and Mathematics IN (Details)
Research Institute for Computational Methods FI (Details)
Google Scholar: Search